Latent Composite Likelihood Learning for the Structured Canonical Correlation Model

نویسنده

  • Ricardo Silva
چکیده

Latent variable models are used to estimate variables of interest – quantities which are observable only up to some measurement error. In many studies, such variables are known but not precisely quantifiable (such as “job satisfaction” in social sciences and marketing, “analytical ability” in educational testing, or “inflation” in economics). This leads to the development of measurement instruments to record noisy indirect evidence for such unobserved variables such as surveys, tests and price indexes. In such problems, there are postulated latent variables and a given measurement model. At the same time, other unantecipated latent variables can add further unmeasured confounding to the observed variables. The problem is how to deal with unantecipated latents variables. In this paper, we provide a method loosely inspired by canonical correlation that makes use of background information concerning the “known” latent variables. Given a partially specified structure, it provides a structure learning approach to detect “unknown unknowns,” the confounding effect of potentially infinitely many other latent variables. This is done without explicitly modeling such extra latent factors. Because of the special structure of the problem, we are able to exploit a new variation of composite likelihood fitting to efficiently learn this structure. Validation is provided with experiments in synthetic data and the analysis of a large survey done with a sample of over 100,000 staff members of the National Health Service of the United Kingdom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Variational Canonical Correlation Analysis

We present deep variational canonical correlation analysis (VCCA), a deep multiview learning model that extends the latent variable model interpretation of linear CCA (Bach and Jordan, 2005) to nonlinear observation models parameterized by deep neural networks (DNNs). Computing the marginal data likelihood, as well as inference of the latent variables, are intractable under this model. We deriv...

متن کامل

A Latent Variable Model for Two-Dimensional Canonical Correlation Analysis and its Variational Inference

Describing the dimension reduction (DR) techniques by means of probabilistic models has recently been given special attention. Probabilistic models, in addition to a better interpretability of the DR methods, provide a framework for further extensions of such algorithms. One of the new approaches to the probabilistic DR methods is to preserving the internal structure of data. It is meant that i...

متن کامل

Bayesian group factor analysis with structured sparsity

Latent factor models are the canonical statistical tool for exploratory analyses of lowdimensional linear structure for an observation matrix with p features across n samples. We develop a structured Bayesian group factor analysis model that extends the factor model to multiple coupled observation matrices; in the case of two observations, this reduces to a Bayesian model of canonical correlati...

متن کامل

A comparison of algorithms for maximum likelihood estimation of Spatial GLM models

In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...

متن کامل

Asymptotic expansions of the distributions of estimators in canonical correlation analysis under nonnormality

Asymptotic expansions of the distributions of typical estimators in canonical correlation analysis under nonnormality are obtained. The expansions include the Edgeworth expansions up to order O(1/n) for the parameter estimators standardized by the population standard errors, and the corresponding expansion by Hall’s method with variable transformation. The expansions for the Studentized estimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012